

The ANR COoL-AMmetropolis project : towards establishing virtuous scenarios for reducing greenhouse gas emissions of the Aix-Marseille-Provence metropolis (France)

Irène Xueref-Remy¹, L. Lelandais¹, A. Riandet¹, A. Armengaud², F. Hernandez³, M.L. Lambert³, V. Masson⁴, A. Nicault⁵, G. Gille², B. Scheeren⁶, S. Palstra⁶, H. Chen⁶, D. Lowry⁷, E. Nisbet⁷, J. Turnbull⁸, T. Salameh⁹, S. Sauvage⁹, M. Dufresne⁹, P.E. Blanc¹⁰, M. Claeys⁴, P. Bosio¹, B. Nathan¹¹ and other ICOS station PIs

¹Aix Marseille Univ, Avignon Université, CNRS, IRD, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Marseille/Aix-en-Provence, France. ²Agence Régionale de surveillance de la qualité de l'air (ATMOSUD), Marseille, France. ³Aix-Marseille Université, Institut d'Urbanisme et d'Aménagement Régional (IUAR/LIEU), Aix-en-Provence, France. ⁴Centre National de Recherches Météorologiques (CNRM), Toulouse, France. ⁵Groupe Régional d'Experts sur le Climat (GREC-SUD), Marseille, France. ⁶Center for Isotope Research (CIO), Groningen, Netherlands. ⁷Royal Holloway, University of London, England. ⁸Radiocarbon lab, GNS Science, Lower Hutt, New Zealand. ⁹IMT Nord-Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France. ¹⁰Observatoire de Haute Provence, OSU Institut Pytheas, CNRS, Saint-Michel-l'Observatoire, France. ¹¹Formerly at Aix Marseille Univ, Avignon Université, CNRS, IRD, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Marseille/Aix-en-Provence, France.

CONTEXT: Cities and their industrial infrastructures are estimated to emit more than 70% of global fossil fuel CO₂ emissions (Seto et al, 2014). Furthermore, methane sources are not well known at the regional/urban/industrial site scales. The Aix-Marseille metropolis is located in the south-east of France in the SUD-PACA region. It is supposed to emit about 15% of national fossil fuel CO₂ emissions (i.e. 10.4 MtC/yr, source : ATMOSUD) and about 4.6% of national anthropogenic CH4 emissions (i.e. 2.65 MteqCO2, source : ATMOSUD). Its emissions are delivered at a fine scale (1h, 1x1 km²) by the regional air quality monitoring agency ATMOSUD, but these emissions have never been assessed independently. Our project aims at assessing independently the ATMOSUD CO₂ and CH₄ emissions inventory using top-down approaches in order to reducing its uncertainties and to helping local and regional stakeholders to take efficient emissions mitigation actions towards reaching carbon neutrality in 2050 or earlier. We organize regular seminars with stakeholders to discuss about our results and to improve with them the definition of virtuous and realistic scenarios. We will model these scenarios at the fine scale using the MESO-NH national meteorological model coupled with the ISBA-A-gs vegetation model and the TEB urban canopy model.

OBJECTIVES:

✓ Assessing and improving current emission inventory estimates of the Aix-Marseille-Provence metropolis through atmospheric observation-based approaches.

 \checkmark Developing a high resolved CO₂ modeling framework based on the MESO-NH model including emission inventory estimates and a dynamic modeling tool of CO₂ emissions from buildings, to model atmospheric CO₂ urban plumes.

✓ Assessing the performances of the modeling framework by comparing meteorological, boundary layer height and CO₂ measurements with the modeled fields.

✓ **Defining vertuous CO₂ emissions mitigation scenarios** together with local stakeholders and socio-economic actors taking into account current environmental laws and sobriety approaches, at the horizon 2030 and 2050.

✓ Modeling these scenarios by emission sectors at high resolution on the AMP metropolis (including e.g. building isolation, air conditioning mitigation, greener mobility)

FOCUS OF THIS POSTER : Here we present results on atmospheric CO₂ variability and source apportionment in the area of the Aix-Marseille-Provence metropolis, France.

REGIONAL AND METROPOLITAN CO2 EMISSIONS :

According to ATMOSUD inventory, 96% of anthropogenic emissions from Aix-Marseille-Provence metropolis come from the burning of fossil fuels (mostly from the industry sector, as there is a very large industrial complex in the west part of the Aix-Marseille metropolis).

REGIONAL ATMOSPHERIC CO2 AND CH4 NETWORK :

We developed an atmospheric CO_2 and CH_4 observation network in and around the Aix-Marseille-Provence metropolis made of 6 sites equiped of CRDS analyzers calibrated on the WMO-2007 scale. The data precision and

VARIABILITY OF ATMOSPHERIC CO₂: Xueref-Remy et al, 2022, in subm.

At both ICOS remote sites (ERSA and OHP), atmospheric CO_2 shows a clear seasonal cycle of about 10 ppm of amplitude and an annual increase of about 2.7 ppm almost as in Mauna Loa, Hawaii. Large spikes of CO_2 are found in Marseille (CAV), especially in winter (higher emissions from heating and lower boundary layer height) and at low wind speed (accumulation of emissions on the city), giving rise to a CO_2 urban dome/plume. At the urban coastal site (SME), the coastal breezes regime controls the CO_2 variability with higher CO_2 concentrations for airmasses coming from land and passing over the city in a shallow boundary layer (land breezes, at night) than for those coming from the sea (sea breezes, daytime).

ATMOSPHERIC CO₂ **SOURCES APPORTIONMENT:** Lelandais, Xueref-Remy et al, EGU 2022

To assess the role of fossil fuel combustion vs modern sources on the urban CO₂ plume of Marseille, we performed a ¹⁴C in CO₂ analysis in the winter 2020 at the CAV site, which shows that at the maximum of the morning traffic peak, about 87% of atmospheric CO₂ comes from the combustion of fossil fuel sources. We also carried on a ¹³C analysis in atmospheric CO₂ which gives a source signature of -44 permil at the maximum of the morning traffic peak. Although in the litterature this value is close to the signature of natural gas, we can not conclude in our case year as we need to measure the signature of local natural gas that comes from Algeria and which is not given in the litterature yet. This is our next perspectives, with the characterization of the signatures of the main local 13C sources (wood, grasses, oil...).

References : Lelandais, Xueref-Remy et al (2022), EGU conference, Vienna, Austria. Seto et al (2014) eds. Cambridge, UK and New York, NY: Cambridge University Press. Xueref-Remy et al (2022), Atm. Env., in subm.

				Technics		Keeling plot			
δ^{13} Cs = a * δ^{13} Cff + b * δ	¹³ Cmodern			period		Morning	1	14h	Evening
				δ¹³Cs		-36,07		-27,7	4 -29,8
δ^{13} Cs = X * δ^{13} Cff + (1- X) *	δ ¹³ Cmode	rn	(δ ¹³	δ ¹³ Cff ¹ Cs correct	ed)	-44,53		-42,2	8 -36,41
1	-24‰	Reference	d13C traffic (permil)	d13C liq (permil)	d13C gas (permil)	d13C solid (permil)	d13C b (permi	oio il)	d13Cs (permil)
X% of CO2ff	δ ¹³ Cbio	Venturi et al 2021	-27	-28.9	-44				-27 to -36
Morning : 58 (44-87) 14h : 20.4 Evening : 46.71	\ \ \ \ \ \ \ \ \	Clark and Thorne 2003 Widory and Javoy 2003 Pang et al 2016	-32 to -27		-44 to -37	-24.8			
		Venturi et al 2020	-27				-26.5 -20		-26 / -22 jul -30.6 / -25.5 oc -36.4 / -30.4 nc
		Gorcka and lewicka 2013 Zimnoch et al 2009	-27		-40/-42		-26.5 -20		-27.6 / -25.7
		Lopez et al 2013		-26,5	-41	-24.1	-24.7		