

Standardization of the Eddy Covariance Instruments and Methods: Needs, Evaluation and Optimization

Sundas Shaukat^{1,2}, Simone Sabbatini^{2,3}, Giacomo Nicolini^{2,3}, Antje Maria Moffat⁴, Luca Belelli Marchesini⁵, Bernard Heinesch⁶, Daniel Berveiller⁷, Christian Brummer⁸, Aurore Brut⁹, Christophe Chipeaux¹⁰, Alexander Graf¹⁷ Radek Czerný¹², Thomas Grünwald¹³, Lukas Johannes Hörtnagl¹⁴, Anne Klosterhalfen¹⁵, Sébastien Lafont¹⁰, Leonardo Montagnani¹⁶, Tanguy Manise⁶, Virginie Moreaux¹⁷, Matthias Peichl¹⁵, Frederik Schrader⁸, Tiphaine Tallec⁹ Dario Papale²

CNR National Research Council, IRET, Porano, Italy; ²University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Viterbo, Italy; ³Euro-Mediterranean Center on Climate Change, IAFES Division, Viterbo, Italy; German Meteorological Service (DWD) Centre for Agrometeorological Research, Brunswick, Germany; ⁵Fondazione Edmund Mach and Innovation Center, San Michele all'Adige, Italy; ⁶University of Liege, Gembloux Agro-Bio Tech, Liege, Belgium; ⁷CNRS, ESE, Orsay, France; ⁸Johann Heinrich von Thünen Institute, Braunschweig, Germany: ⁹Université Paul Sabatier, CESBIO, Toulouse cedex 09, France; ¹⁰INRAE, ISPA, Bordeaux, France: ¹¹ Organization Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany; ¹²CzechGlobe, Brno, Czech Republic: ¹³Technische Universität Dresden, Institute for Hydrology and Meteorology, Dresden, Germany; ¹⁴ETH Swiss Federal Institute of Technology Zurich, Zurich, Switzerland; ¹⁵SLU Swedish University of Agricultural Sciences Umeå, Department of Forest Ecology and Management, Umeå, Sweden; ¹⁶Free University of Bolzano, Bolzano, Italy; ¹⁷ San Diego State University, Global Change Research Group, San Diego, CA, United States.

• In site wise comaprison, we see that fluxes from ICOS and NONST setups processed with different methods varies from each other (a).

- each other. Effect of different setups on FC is generally alike in terms of mean absolute error. This variability was also noted in the results shared by PIs of the respective sites (b).
- It is noted that differences between fluxes obtained from ICOS and NONST processing (calculation only) schemes reduced significantly in maximum sites (c).

• The differences in FC obtained from enclosed and open path IRGA are more obvious as compared to Fc from enclosed and closed path IRGA (as fluxes from closed path and enclosed path are more consistent with

• ICOS and NONST processing schemes for ICOS setup are close to each other with small MAE as compared to fluxes from non ICOS setup. In most of the sites (9 out of 13) ICOS processing is overestimating fluxes respect to PIs results. For NONST setups ICOS processing is overestimating fluxes in all sites. Two different processing methods have relatively less impact on ICOS setup in contrast with non ICOS setup (d).

by them are more suitable (SETUP EFFECT).

Calculated Fluxes (without filtering) from ICOS setup demonstrate small variability between ICOS and NONST processing methods in contrast with setups (CALCULATION NONST **EFFECT**). But processing (calculation +filtering) increases variability in both NONST and setups (PROCESSING EFFECT).