

SI-Traceability for Earth Observations – Tying It All Together

Greg Kopp¹, Seth L. Cousin¹, Constantine Lukashin², and Paul Smith¹ 1) Univ. of Colorado / LASP, Boulder, CO 80303; 2) NASA Langley Research Center, Hampton, VA

CLARREO Pathfinder Measures **Outgoing Earth-Reflected Radiances**

Using the Sun as a calibration source, the CLARREO Pathfinder (CPF) HyperSpectral Imager for Climate Science (HySICS) directly measures solar incoming and Earth-reflected radiation to < 0.3 % (*k*=1) uncertainty from 350 – 2300 nm with $\Delta\lambda$ = 6 nm and provides high-accuracy radiometry of Earth scenes.

On-orbit HySICS calibrations using direct measurements of the Sun tied to SI-traceable solar-irradiance measurements obviate reliance on pre-launch radiometric calibrations, improving on-orbit accuracy and stability

HySICS calibrations rely on measurements of ratios, not absolute calibrations and intrinsic instrument stability

HySICS Performan	
Parameter	
Spectral Range	
Spectral Resolution	
Spatial Resolution IFOV	
Field of View (cross track)	(~
Radiometric Accuracy	

The HySICS provides spatially- and spectrally-resolved ground-scene measurements with high radiometric accuracy tied to SI-traceable solar irradiances

ice Goals Performance 350 – 2300 nm < 2.5 arcmin (< 0.25 km) ~ 70 km at nadir) < 0.3 %

Earth Observations Tied to Solar-Irradiance Measurements

Direct measy the ratios of incoming solar to outgoing reflected-solar radiation curate than the difference of their individual measurements by eliminating can be more a common-mode errors, improving on-orbit radiometric accuracy for Earth observations

The CPF/HySICS ratios Earth's outgoing to incoming shortwave spectral reflectances

 ARCSTONE ratios lunar reflectances, enabling the Moon to be used as a high-accuracy onorbit spectral calibration source by most Earth-viewing instruments

 SI-traceable solar-irradiance measurements link these high-accuracy direct reflectance measurements to radiances and irradiances

The CPF/HySICS and TSIS measure the Earth's outgoing and incoming shortwave (solar-reflected) radiation, as needed for climate studies. ARCSTONE transfers lunar-irradiance cross-calibrations to most Earth-observing instruments.

Advantages of Solar Cross-Calibration Approach

- Direct solar and scene measurements with common optics give reflectances with high accuracy
- Scene and Sun measurements in close succession compensate for instrument degradation
- Reflectance measurements are independent of solar variability
- Internal flight-instrument primary calibration sources are not needed

The ARCSTONE directly measures solar-incident and lunar-reflected radiation to < 0.5 % (k=1) uncertainty from 350 – 2300 nm with $\Delta\lambda$ = 8 nm from a 6U CubeSat. Having similar radiances as Earth scenes, the Moon can be used by most Earthobserving sensors for on-orbit radiometric calibrations with improved accuracy provided by ARCSTONE.

Stephens, G., et al., Nature Geo., 2012

TSIS Measures Incoming Solar Irradiances The Total and Spectral Solar Irradiance Sensor (TSIS) measures total and spectral solar irradiance, allowing high-accuracy HySICS and **TSIS Measures Incoming Solar Irradiances**

and spectral solar irradiance, allowing high-accuracy HySICS and ARCSTONE reflectance measurements to be converted to highaccuracy SI-traceable radiances and irradiances

The Sun is the best-known and most stable on-orbit source in the visible & NIR

Reliance on ground-based measurements and subsequent on-orbit instrument stability is reduced

Recommendation Earth-Observing Instruments Should Measure Solar and Lunar **Irradiances for On-Orbit Radiometric Spectral Calibrations**

ARCSTONE Extends Lunar Calibrations to Most Earth-Observing Instruments

On-orbit ARCSTONE calibrations using direct measurements of spectral solar irradiances are transferred to lunar irradiances as a function of phase and libration, improving lunar-irradiance model accuracies

ARCSTONE calibrations rely on measurements of ratios, not absolute calibrations and intrinsic instrument stability

Lunar-irradiance models can extend the ARCSTONE's lunar measurements to any era, enabling calibrations of non-cotemporal instruments

The TSIS-1 measures total solar irradiance with ~0.015 % uncertainty and spectral solar irradiance over 200 – 2400 nm with ~0.3 to 0.5 % uncertainty

Greg Kopp *et al.*, BIPM-WMO Metrology for Climate Action Workshop, 26-30 Oct