Accounting for covariance in emissions' inventories

Maurice Cox, Tom Gardiner (NPL, UK) Walter Bich, Andrea Merlone (INRIM, Italy)

BIPM-WMO workshop: Metrology for climate action, September 2022

Heart of the matter

Approach in Kyoto Protocol expresses total emissions in terms of CO_2e (CO_2 equivalent')

Based on sum of contributions of form

 $\underbrace{ \begin{array}{c} \text{Global Warming Potential} \\ \hline \text{GWP100} \end{array}}_{A} \times \underbrace{ \begin{array}{c} \text{Activity} \\ A \end{array}}_{F} \times \underbrace{ \begin{array}{c} \text{Emissions' factor} \\ F \end{array} }_{F} \\ \end{array}$

GWP100: factor converting emissions for a particular gas to CO₂e on 100 year basis

A: activity for a specific source category

F: emissions of a given pollutant from that category

Agriculture sector data from UK National Atmospheric Emissions Inventory

Activity rate data, emission factors with expanded uncertainties U (95 % conf.)

2 sets of 3 equal values of *A* implies commonality (correlation)

Also, should GWP factors be applied separately or collectively?

Fuel	Gas	<i>A</i> /(TJ)	U(A)/%	F/ktTJ ⁻¹	U(F)/%
Gas oil	CO ₂	0.020438	38.6	2.0438×10^{-2}	2.7
Gas oil	CH_4	0.020438	1.6	3.5368×10^{-6}	80.0
Gas oil	N ₂ 0	0.020438	1.6	3.0984×10^{-6}	216.3
Petrol	C0 ₂	67.19	50.7	1.9127×10^{-2}	$4.8654 imes 10^{-5}$
Petrol	CH ₄	67.19	1.6	$4.8654 imes 10^{-5}$	80.0
Petrol	N ₂ 0	67.19	1.6	3.3578×10^{-7}	216.3

Including such factors independently ignores correlation

Model just involving CO2 emissions

Apply GUM (JCGM 100)

Gives emissions $E = 4282 \text{ ktCO}_2 \text{e}$

Assuming independence: relative standard uncertainty 19 %

Accounting for correlation: 24 %

Some 200 ktCO₂e difference: meaningful

Account also for contributions from other GHGs

More details in recorded presentation

Recommendations

Always scrutinize origins of data: often challenging to source raw data from reputable sources

Look for commonalities, perceived correlations,

Pay regard to involvement of single party or multiple parties

(As always in science) be transparent and state assumptions