Primary Standards, Reference Materials, and Uncertainty Analysis 7

for the Measurement of Greenhouse Gases 0

NATIONAL INSTITUTE OF
_ STANDARDS AND TECHNOLOGY
U.S.DEPARTMENT OF COMMERCE

Christina Cecelski, Blaza Toman, Juris Meija, Fong-Ha Liu, Kimberly Harris, Jennifer Carney, Antonio Possolo

NIST has developed methods to characterize contributions of uncertainty from “unknown” sources that we do
not fully understand yet, and to better represent such uncertainties in our data reductions for gas analysis.
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“Historical” Uncertainty

Deriving from lack of reproducibility in the long term, historical uncertainty is included in the certification of gas
mixture Standard Reference Materials (SRMs), to account for long-term changes in a gas mixture over time
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“Dark” Uncertainty

Emerging from mutually inconsistent measurement results, dark uncertainty is applied to errors-in-variables (EIV)
regression analysis, to account for excess dispersion of participants’ results in a GAWG key comparison
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