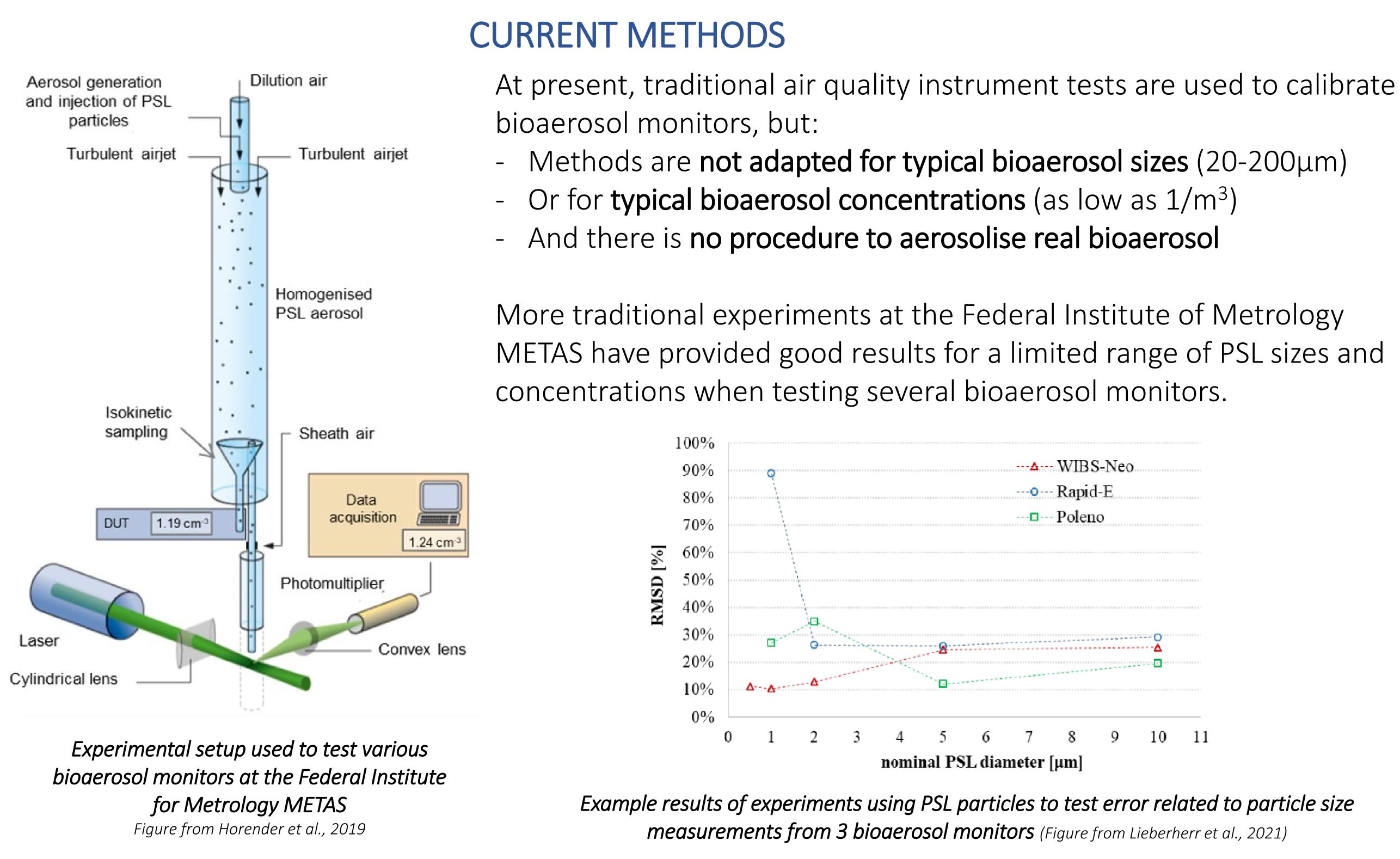
The need to develop calibration procedures for automatic bioaerosol monitors

Fiona Tummon¹, Kevin Auderset², Bernard Clot¹, Benoît Crouzy¹, Gian Lieberherr¹, Julia Schmale³, Georgi Tancev², Konstantina Vasilatou², and Christian Wälchli²

¹Federal Office of Meteorology and Climatology MeteoSwiss, Switzerland; ²Federal Institute for Metrology METAS, Wabern, Switzerland; ³Extreme Environments Laboratory, EPFL, Sion, Switzerland

WHY BIOAEROSOLS? Bioaerosols play a key role in: **Climate change:** hydrological cycle, species distributions Human health: allergens, disease vectors, biowarfare - Agriculture: plant and animal pathogens, crop forecasts Costs associated with certain impacts are significant: - Well over €50 billion/year for allergies in Europe alone **Crop losses** related to fungal pathogens also cost **billions/year** Land Use Change **Biodiversity** Invasive species, distribution Agriculture Atmospheric changes Plant & animal physics pathogens, Clouds, radiation, monitoring, precipitation pollination Climate **Bioaerosols** Change Atmospheric Aeroallergens chemistry Monitoring, Aerosol and forecasting, cloud treatment chemistry Human pathogens Disease vectors, biowarfare Public Health Importance of bioaerosol in the Earth system


Figure adapted from Santl-Temkiv et al., 2020

WHY NOW?

A number of different **automatic instruments** have come on to the market in recent years:

- Flow cytometers: DMT WIBS, Plair Rapid-E, Swisens Poleno
- Impactors: Hund BAA500, PollenSense APS

And new technologies are continuously being developed. Automatic monitoring networks are being established but **no** procedures to calibrate bioaerosol monitore exist and results across different instruments are difficult to compare.

DEVELOPMENT NEEDS

Methods need to be developed to address the following issues so that standard procedures to calibrate bioaerosol monitors can be established:

Bibliography

- tube and a reference optical particle counter, Review of Scientific Instruments, doi:10.1063/1.5095853
- Lieberherr et al., 2021, Assessment of Real-time Bioaerosol Particle Counters using Reference Chamber Experiments, Atmospheric Measurement Techniques, doi: /10.5194/amt-2021-136.
- doi:10.1080/02786826.2019.1676395

- Soft techniques to aerosolise large particles – from 20-200 μm in size (for size distributions) - Reference particle counters or reference measurement procedures for low particle number **concentrations** – down to $1/m^3$ (for counting efficiency)

- Methods to aerosolise real bioaerosol particles in known quantities (e.g. pollen and fungal spores) - Test results under **different environmental conditions** (e.g. humidity and temperature) **Portable instruments** that can be used to carry out **calibrations in the field** - Well-defined (reference) bioaerosols for training the built-in AI algorithms for particle identification

EPFL

• Horender et al., 2019, Facility for calibration of optical and condensation particle counters based on a turbulent aerosol mixing

• Santl-Temkiv et al., 2020, Bioaerosol field measurements: Challenges and perspectives in outdoor studies, Aerosol Science,

```
---- WIBS-Neo
---o--- Rapid-E
---• Poleno
```


Confédération suisse infederazione Svizzera wiss Confederatio

MeteoSwiss

ederal Department of Home Affairs FDH

