

/ university of groningen

Leveraging quantum calculations and independent spectroscopic measurement techniques to yield line intensities with relative uncertainties at the permille level

Katarzyna Bielska¹

Aleksandra A. Kyuberis², Zachary D. Reed³, Gang Li⁴, Agata Cygan¹, Roman Ciuryło¹, Erin M. Adkins³, Lorenzo Lodi⁵, Nikolay F. Zobov⁵, Volker Ebert⁴, Daniel Lisak¹, Joseph T. Hodges³, Jonathan Tennyson⁵, Oleg L. Polyansky⁵

¹Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Poland
²Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, The Netherlands
³Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg MD, U.S.A.
⁴PTB (Physikalisch-Technische Bundesanstalt), Braunschweig, Germany
⁵Department of Physics and Astronomy, University College London, United Kingdom

Metrology for Climate Action, 26-30 September 2022

Outline

- 1. Motivation
- 2. Accuracy requirements
- 3. Lack of data compliance in literature data
- 4. Idea: theory + experiment
- 5. Previous study: CO₂ case
- 6. Present study: CO case
 - theory
 - three experiments
- 7. Comparisons between experiments and theory
- 8. Comparison with literature data
- 9. Conclusions & perspectives

Motivation: atmospheric applications

- transportation processes
- greenhouse gases
- sources of contaminants
- terrestrial vegetation
- chemical processes
- pressure and temperature profiles
- remote cloud detection
- stratospheric winds
- ...

TCCON total carbon column observing network

What accuracy is needed?

• Explanation of regional CO₂ fluxes requires accuracy of 1 ppm (2.5‰)

D. R. Thompson et al., J. Quant. Spectrosc. Radiat. T. 113, 2265 (2012); C. Miller et al., J. Geophys. Res. 112, D10314 (2007)

• CO: trace gas in the atmosphere, used for monitoring transportation processes, affects formation of greenhouse gases

World Meteorological Organization: inter-laboratory comparisons at 1 ppb or 5‰ level are needed P. Tans, P. Zellweger (eds.), 18th WMO/IAEA meeting on carbon dioxide, other greenhouse gases and related measurement techniques (GGMT-2015). GAW Report No. 229: World Meteorological Organization (2016)

Remote sensing claims measurement accuracy as good as ~2‰
Y. Yuan et al., Remote Sens. 11, 2981 (2019); D. Wunch et al., Phil. Trans. Roy. Soc. A 369, 2087 (2011)

Motivation: lack of data compliance

10x better accuracy is expected!

Theory:

V. I. Perevalov et al., J. Mol. Spectrosc. 252, 190 (2008)
S. A. Tashkun and V. I. Perevalov, JQSRT 112, 1403 (2011) (CDSD)
L. S. Rothman e al., JQSRT 130, 4 (2013) (HITRAN 2012)

Experiment:

V. M. Devi et al., J. Mol. Spectrosc. 245, 52 (2007) D. Boudjaadar et al., J. Mol. Spectrosc. 238, 108 (2006) (GSMA, LPPM)

Motivation: lack of data compliance

CO (3-0) band

10x better accuracy is expected!

V. V. Meshkov et al., J. Quant. Spectrosc. Radiat. Transf. 280, 108090 (2022)

Our road to permille level line intensities: CO₂ case

Theory

verified by

experiment

Highly-accurate calculations:

- *ab initio* dipole moment surface
- empirical potential energy surface

State-of-the-art measurements:

- cavity ring-down spectroscopy (CRDS)
- advanced line-shape analysis

CO₂ (30013)-(00001) band: comparison with theory

High-Accuracy CO₂ Line Intensities Determined from Theory and Experiment

Oleg L. Polyansky,^{1,2} Katarzyna Bielska,^{3,4} Mélanie Ghysels,³ Lorenzo Lodi,¹ Nikolai F. Zobov,² Joseph T. Hodges,³ and Jonathan Tennyson^{1,*}

CO₂: further results

(20012)-(00001) band

Line	Present work	<i>Ab initio</i> calculations ¹¹	Relative deviation (%)
R(6)	8.355 ± 0.014	8.348	0.08
R(4)	6.235 ± 0.012	6.210	0.40
R(2)	3.844 ± 0.009	3.822	0.57

D.A. Long et al., Geophys. Res. Lett. 47, e2019GL086344 (2020)

Our road to permille level line intensities: CO case

Why CO?

- smaller molecule simpler structure more accurate calculations possible
- good test case: diatomic, two different atoms
- experimentalist-friendly: non-sticky, relatively simple line structure

Theory

verified by

3 experiments

Highly-accurate calculations:

- *ab initio* dipole moment curve
- empirical potential energy curve

Substantially different state-of-the-art measurements:

- cavity ring-down spectroscopy (CRDS, NIST)
- cavity mode-dispersion spectroscopy (CMDS, NCU)
- Fourier transform spectroscopy (FTS, PTB)

Theoretical calculations at UCL

Line strength:

$$S_{ij} = \left[\int_{V} \psi_{i}^{*} M(\vec{r}) \psi_{j} dV\right]^{2}$$

 $M(\vec{r})$ - dipole moment from *ab initio* calculations

 ψ_i , ψ_j - wave functions corresponding to the lower and higher energy level, based on empirical potential energy curve from J. A. Coxon and P. G. Hajigeorgiou, J. Chem. Phys. 121, 2992 (2004)

Cavity ring-down spectroscopy (CRDS) at NIST

A. O'Keefe, D.A.G. Deacon, Rev. Sci. Instrum 59, 2544 (1988)

u(S)

1‰

Hélène M. Fleurbaey, and Joseph T. Hodges[†]

Spectroscopy in high-finesse optical cavity: CMDS at NCU

CRDS & CDMS spectra

Fourier transform spectroscopy (FTS) at PTB 1

- multipass White cell
- calibrated absorption path length
- highly linear InGaAs detector

$$\frac{u(S)}{S} \approx 1.3\%$$

V. Werwein et al., Appl. Optics 56, E99 (2017)

K. Bielska et al., Phys. Rev. Lett. 129, 043002 (2022), Supplemental Material

Experimental uncertainties & line profiles

	CRDS (NIST)	CMDS (NCU)	FTS (PTB)		
line profile	HTP + LM	HTP + LM	SDVP + LM		
Uncertainty sources					
pressure measurement		0.5‰	0.7‰		
temperature measurement	0.5% 10 0.9%	0.3‰ to 0.7‰	0.01‰ to 0.2‰		
spectrum modeling	0.2‰	0.6‰	1‰		
sample isotopic composition	0.40/	0.4‰	0.01‰		
sample purity	0.4‰	0.03‰	0.0025‰		
digitizer non-linearity	0.2‰				
path length			0.12‰		
statistical uncertainty	0.6‰ to 1.4‰	0.5‰ to 0.5‰	0.1‰ to 0.5‰		
Total uncertainty	0.9‰ to 1.8‰	1.0‰ to 1.2‰	1.3‰		

HTP - Hartmann-Tran profile (N. Ngo et al., J. Quant. Spectrosc. Radiat. Transf. 129, 89 (2013))
SDVP – speed-dependent Voigt profile (P.R. Berman, J. Quant. Spectrosc. Radiat. Transf. 12, 1331 (1972))
LM – line-mixing (R. Ciuryło, A. Pine, J. Quant. Spectrosc. Radiat. Transf. 67, 375 (2000))

Theory and experiment: intensities comparison

Theory and experiment: intensities comparison

Comparison with literature data

- □ PTB (FTS)
- \bigtriangledown measurement (aver.CRDS & CMDS)
- ▲ Henningsen et al. (1999)
- Chackerian et al. (2001)

- Sung and Varanasi (2004)
- Borkov et al. (2020)
- Jacquemart et al. (2001)

Comparison with literature data: HITRAN 2020 and new global fit

K. Bielska et al., Phys. Rev. Lett. 129, 043002 (2022)

Conclusions and perspectives

- We obtained twenty-five fold reduction in uncertainty compared to literature data.
- Theoretical calculations provide CO line intensities also for bands (1-0), (2-0), and (4-0) that are expected to have similar accuracy.
- We recommend use of the presented theoretical approach for other molecules, followed by confirmation by independent, multi-laboratory measurements.
- New Task Group on Advanced Spectroscopy within Consultative Committee for Amount of Substance (CCQM) meeting at the International Bureau of Weights and Measures (BIPM) to bridge gas metrology and molecular spectroscopy.
- More coordinated, interactive comparisons are needed to provide accurate, spectroscopic reference data.

Thank you for your attention!