

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

Current challenges in atmospheric black carbon determination: A traceable calibration for aerosol light absorption measurement

Jorge Saturno¹, Andreas Nowak¹, Volker Ebert¹, Thomas Müller², Sascha Pfeifer², Baseerat Romshoo², Kostas Eleftheriadis³ ¹Physikalisch-Technische Bundesanstalt, Braunschweig, Germany. ²Leibniz Institute for Tropospheric Research, Leipzig, Germany. ³NCSR Demokritos, Athens, Greece.

BACKGROUND **LIGHT ABSORPTION MEASUREMENT TECHNIQUES INSTRUMENTS** The measurement of particles in air characterized as black **TRACEABLE TO SI AVAILABLE EURAME** carbon (BC) is important both for its role in climate change EMS **CAPS PMssa** and as a measure of combustion products associated with (Aerodyne Research) **EXTINCTION MINUS SCATTERING**

health effects. Measurements are made very widely, and compact, precise, real-time, relatively inexpensive instruments are available. Although it is conceptually a simple measure of the light absorbing properties of airborne particles, the metric does not currently have SI traceability, with consequences for the comparability and interpretation of data.

METROLOGY PROJECTS EMPIR Black Carbon | 2017–2020

https://empirblackcarbon.com

Metrology Partnership StanBC | Starting 2023

PTI **PHOTOTHERMAL INTERFEROMETRY**

PAS PHOTOACOUSTIC SPECTROMETRY

FBM **FILTER-BASED METHODS**

PTAAM (Haze Instruments)

PAX (Droplet Measurement Technologies) **PAAS** (SchnaitTEC)

Aethalometer (Magee Scientific) **PSAP** (Rádiance Research)

ERROR PROPAGATION FOR EMS

AEROSOL GENERATION

• DIFFUSION FLAME GENERATOR (miniCAST)

FRESH-LIKE BLACK CARBON TARGET AEROSOL PROPERTIES

PARTICLE DIAMETER 25 - 100 nm

ABSORPTION ANGSTRÖM EXPONENT AAC ~1.0

SINGLE SCATTERING ALBEDO SSA <0.1

MODELING BLACK CARBON FRACTAL AGGREGATES

The MAC_{BC} increases by up to 30% in larger BC

CONCLUSIONS AND OUTLOOK

• Extinction minus scattering offers the possibility of measuring light extinction in a traceable way. The determination of the uncertainties of light scattering coefficients is possible within certain limits.

• miniCAST diffusion or pre-mixed flame generators are suitable for producing fresh-like soot particles with a low organic carbon fraction. The fuel to oxygen ration of the generator can be tuned to fulfil the required aerosol properties.

• Using aerosol electrical mobility and other physico-chemical properties (fractal dimension, primary particle size and fraction of organics), it is possible to model the optical properties.

• Other techniques, like PTI and PAS, offer a good opportunity to achieve a traceable calibration chain for aerosol light absorption and for instrumental inter-comparison.

ACKOWLEDGEMENT This work is funded by the European Metrology Programme for Innovation and Research (EMPIR): Project 16ENV02 Black Carbon Metrology for light absorption by atmospheric aerosols.

Physikalisch-Technische Bundesanstalt National Metrology Institute

Bundesallee 100 38116 Braunschweig, Germany www.ptb.de

Jorge Saturno Working group 3.43 **Aerosols and Particle Measurements**

Phone: +49 531 592 3217 Email: jorge.saturno@ptb.de