
Returning to Prof. Dunn’s question of practical implications, there is no doubt about a different 
interpretation: measurements, variance, and covariance all have a nonlinear component, and thus, 
Pearson correlation also has a nonlinear component.  Such interpretations can be quantified.  By 
random samples of uniform and Gaussian distributions, we can simulate anomalous river height or river 
slope at 10000 well separated reaches that have been observed hourly since the turn of the year 1900.  
The anomaly is such that there is only variability between a day and a year:

For each river reach, we generate about a million samples of a uniform random distribution, bandpass 
filter to get a timeseries in the range -0.2 to 0.2, and from the middle of each timeseries (like the one 
above), we take 5 consecutive samples to define the slowly varying signal in both C and U, which are 
perfectly calibrated.  This experiment takes up the challenge of trying to simulate a confounding impact 
in the presence of measurement error, so two types of perturbations are employed, and both are 
designed to be resolved by a lack of association between C and U:

Gaussian perturbations are added to U in varying degrees.  Spearman perturbations are a random 
reordering of signal in U that might appear to treat two river reaches as exchangeable, but are meant to 
simulate a confounding impact without imposing a systematic relationship between C and U.  Although 
Gaussian and Spearman perturbations might appear to be similar in the upper and lower panels, by 
design, Spearman perturbations impose no turbulent variations across STUVW.  Spearman 
perturbations can be said to perturb U alone, but because they are a perturbation of relative order, it 
follows that if we consider C to be unperturbed and equal to the baseline signal, and U alone to be 
perturbed, then it is only predictive samples involving STUVW, but not ABCDE, that access both 
Gaussian and Spearman perturbations, and hence, might distinguish them on this basis.

Model solutions by the method of moments require only six sample sets, ABCDEU or CSTUVW.  Each 
set yields 6 variance equations, 15 covariance equations, and 17 unknowns.  Analytic solutions exist for 
15 of these unknowns, but the remaining two unknowns are the variance of t and β

U
, the two key 

parameters.  We minimize the distance of a solution to these two parameters using minima or pathways 
in each of six covariance equations that involve the variables other than U and C.  Together with the 
constraint that variance is positive, as expected, we refer to this equitable accommodation of weak or 
imperfect constraints as an exercise in consensus building.

Our two wavelike solutions happen to be directly comparable to ordinary and reverse regression 
solutions that are analytic.  So, in the case of our wavelike solutions, STVW and ABDE, they provide 
subsamples around U and C that allow us to estimate Gaussian error, and in the case of analytic 
ssa..es.

Linear (LA), nonlinear (NA), and lack of association (UR) results are expressed as normalized U and C 
variance budgets, averaged over 100 simulations.  By design, ABDE are poorly employed, because 
they don’t sample any Gaussian perturbations, which makes this model solution perfectly consistent 
with ordinary regression, which assumes C is error-free.  By contrast, STVW are well employed in 
sampling Gaussian perturbations.  This model solution functions an upper bound on β

U
, but provides a 

better bound than reverse regression.  The lack of association terms in C and U allow us to 
distinguish Spearman and Gaussian perturbations, and we suspect that a model with all three 
association categories is needed to do so.

To build a model that is complete and nonlinear from the outset, we begin by equating C, the 
calibrated measurements, and t, the simplest signal model (ignoring noise for the moment).  It 
seems reasonable to characterize geophysicists as attentive to unresolved scales in C when 
developing their numerical models. Similarly, statisticians are attentive to limitations of the linear 
model t.  Thus, when we equate measures and model, a geophysicist might subtract 
representation error from C and a statistician might add equation error to t:

In the literature, it is rare to find a separate equation error or representation error term included in 
the uncalibrated measurement equation.  An accommodation of representation error in both C and 
U is sometimes seen as a debate.  Perhaps we are just “ripping off the bandaid”, in that if we want 
to accommodate representation error in C and U, then we might need to accommodate equation 
error in C and U as well.

Including a separate equation error in U can be justified by its linear relationship to t (note that C 
and U are equally justified, even though their numerical values differ).  Moreover, there seems to 
be no other way for this model to incorporate the impact of hidden or confounding variables.  The 
only measurements are C and U, and these may be impacted differently.  (There is a third 
justification that is more practical, as it relates to the model solution.)

In any case, the interpretation of error in terms of signal is challenging, but in 2017, Graham Dunn 
provided a five-line comment.  This took some time to absorb, but basically, he said that equation 
error could be mixed in with other errors and equation error could be correlated.

If we carry this advice forward, and place measurements on the LHS and model terms on the 
RHS, then we have linear association, correlated and uncorrelated equation error, and 
representation error, which is uncorrelated by definition.  All are signal components insofar as they 
are needed to describe C and U even without measurement error.  Without loss of generality, 
measurement error in C and U can be divided among the signal terms on the RHS, or written as 
its own term (as we wish):

Since we are interested in terms that can be evaluated numerically, we follow Prof. Dunn’s advice 
and let correlated equation error stand alone and combine uncorrelated equation error and 
representation error into a separate term:

The core of our wavelike measurement model is here.  This form makes explicit a “systematic 
error” term ε that we would call error cross-correlation, but whose genuine interpretation is 
nonlinear association.  Similarly, our “random error” terms have the genuine interpretation of a lack 
of association.  Although signal defines our interpretation of terms, again, we can conceive of 
spurious components in each term (https://arxiv.org/abs/2110.08969 is a more formal derivation).

A Framework for Exploring Systematic Error in 
a Quantitatively Complete Measurement Model

2. From Error to Signal 3. A Control Experiment

Can systematic and random error, as defined in VIM (2008), also be interpreted in a way that follows 
Pearson’s (1902) emphasis of “genuine error”?  Respectively, we submit that “nonlinear association” 
and “lack of association” are their genuine interpretations.  First, we develop these ideas out of a 
purely statistical notion of a “measurement model”, or regression model.  Then, we examine a playful 
controlled experiment in the hydrological context.

Our wavelike measurement model employs a collocated sampling strategy that is denoted by the 
coloured dots (moving left to right).  Of interest is the linear, nonlinear, and lack of association 
between a less familiar “uncalibrated” platform or instrument, and one that is more familiar, like an in 
situ platform.  It is notable that wavelike sampling is possible for large datasets that are gridded in 
space or time; not every scientific discipline has the modelling freedom that comes with such 
extensive sampling.

We employ a trichotomy (e.g., truth + systematic + random error)  to describe individual model 
terms. Model heritage can be traced to an introduction by Pearson (1902) of three observers as a 
means to identify the errors of each.  The geophysical focus on Pearson’s approach re-emerged as 
triple collocation in 1988, and helped motivate our wavelike model.  However, instead of three 
independent observers (or three sets of red dots), method-of-moments solutions are identifiable 
using “predictive samples” for just two datasets.  Whereas a collocation of three or more datasets is 
rare, our wavelike model still requires successive sampling of two datasets:

Here, α, β, and t capture linear association between samples, with symmetric first-order 
autoregressive errors for each dataset separately.  Errors are also correlated in ε, which is a term 
not always included in canonical models (Fuller 2006).  Geophysical theory (equations of motion) 
allows for a nonlinear relationship between any two samples (like B-C or C-U).  The key question is 
how a wavelike model accommodates nonlinearity in what looks to be a set of linear relationships?

(1) Progress or lack of progress (challenges) so far
Mahalanobis (1947) seems to address the metrological practice of expanded uncertainty, but is unclear about its motivation.  Meteorologists might pick up where 
Mahalanobis (1947) left off [less with reference to Type-A/B cyclogenesis (Bosart 1994) and more with reference to what Stigler (2018) refers to "high serial correlations" in 
atmospheric soundings].  Pearson (1902) and Mahalanobis (1947) seem to be advocating for genuine interpretations, but equation error (Fuller 2006) only develops later.

(2) Indication of what is needed to improve the information content in environmental measurements or models
Metrologists might distinguish quantitative models to address a) "what is the process?" and b) "how do we measure the process?"  Even for the same process, these are 
not necessarily the same model.  We are familiar with a hierarchy of process models (Held 2015), but perhaps not with a hierarchy of measurement (or regression) models.  
One tenet of statistical inquiry is a model with two terms: observation = truth + error (Salsburg 2017), but metrological convention admits a further division into systematic 
and random error.  We submit that the corresponding nonlinear model with three terms (observation = linear + nonlinear + unassociated) also has quantitative solutions.

(3) Proposals of new or existing tools not currently in use, for improving information content
Shameless self-promotion: “numerical consensus” methods to solve this nonlinear model are at https://github.com/JuliaAtmosOceanHydro/MeasurementModelDemos

(4) Description of potential means to achieve that improvement
One may appeal to colleagues who wish to learn about nonlinear processes that, at the moment, they might be training a neural network to emulate.  (Outside our fields, 
some colleagues also deal with nonlinear processes that are downright spooky.)

(5) Opportunities for collaboration between communities to achieve these improvements
There seems to be an opportunity to bring statisticians and data scientists closer together (Donoho 2017).
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1. Sampling Signal as a Wave
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solutions by reverse and ordinary regression, we would assume that those samples 
don’t exist and that there is no error in the U or C variable bracketed by them.

WAVWAV

References are provided at
https://docs.google.com/document/d/1ukxYVb0Ec8DERQIzqh99DiByYRM97QEPES5sniROTiM
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