Setup for calibration of non-catching disdrometers

Henrik Kjeldsen, Peter Friis Østergaard and Jan Nielsen Danish Technological Institute, DK-8000 Aarhus C, Denmark

INCIPIT project group

Introduction

Precipitation is an ECV: Essential climate variable Product: Estimates of liquid and solid precipitation

Climate studies and everyday hydrological, meteorological, and agricultural applications rely on instruments which measure liquid/solid atmospheric precipitation, however meaningful comparison and interpretation of data is only possible when a common ground for evaluating the measurement uncertainty is provided.

Calibration

Traditional rain gauges: (Tipping bucked + Gravimetric): Measure accumulated amount of precipitation Non-catching disdrometers: Precipitation = sum of individual rain drops

Key parts of calibration

- 1. Procedure (INCIPT project)
- 2. Generation of artificial rain
- 3. Traceability scheme

Calibration procedure: INCIPIT Project

EURAMET project 18NMR03

- Title: Calibration and accuracy of non-catching instruments to measure liquid/solid atmospheric precipitation
- Project period: 2019 2022 (June)
- Coordinator: INRIM (Andrea Merlone)
- Participants: INRIM (Italy), CEM (Spain), DTI (Denmark), SMD (Belgium), UNIGE (Italy) and EDI (Switzerland)

18NRM03 INCIPIT

Publishable Summary for 18NRM03 INCIPIT Calibration and accuracy of non-catching instruments to measure liquid/solid atmospheric precipitation

Generation of rain drops

The goal is to simulate real rain

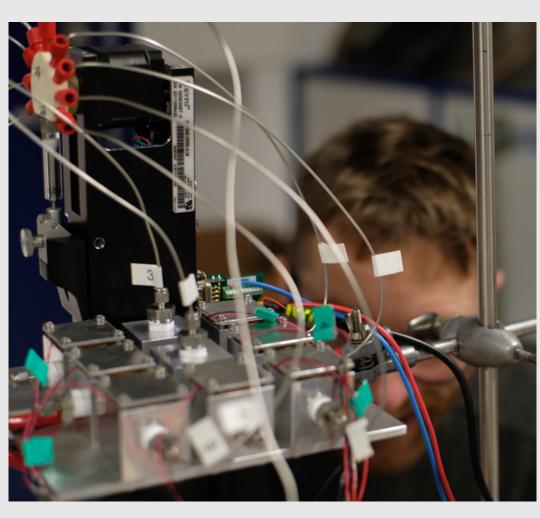
- Volumetric pump
- Water chamber
- Buzzer: Piezo-electric membrane
- Nozzle or tube

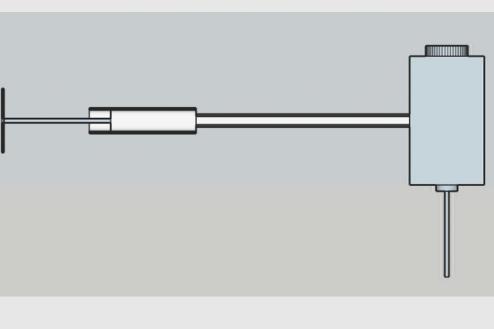
Physical principles

Large drops, > 4 mm: Free falling drops

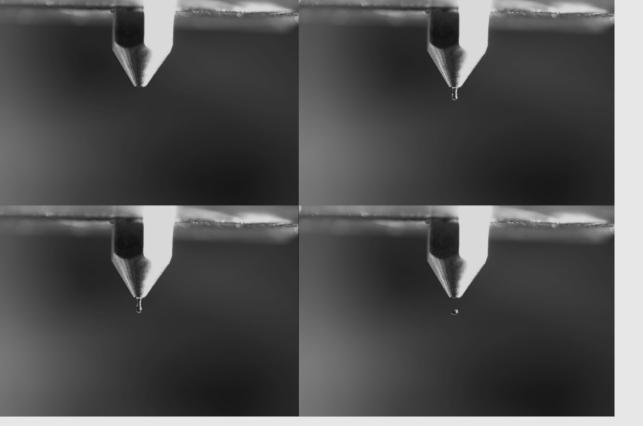
- Pump + very large nozzle because $r \propto \sqrt[3]{d}$
- Difficult to determine physical drop parameters
- Medium-sized drops, 1 4 mm: Free falling with a kick • Pump + tube + buzzer
- Buzzer controls drop release (before free fall)
- Physical parameters from flow and drop frequency Small drops, < 1 mm: Nozzle + buzzer
- Buzzer ejects water from within the nozzle
- For appropriate parameters \rightarrow each pulse = one drop
- Physical parameters from flow and drop frequency

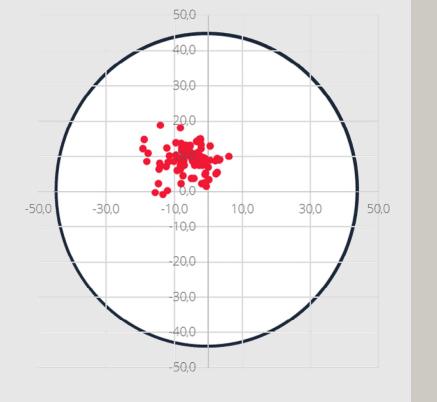
Acceleration


Gravity used for acceleration


- Velocity must be close to terminal velocity • \rightarrow correct detection by gauges
- ... or extrapolated to terminal velocity

Graph showing height required as a function of drop size:


	Height:	Height:	Height:	Height:
diameter	1 m	3 m	8 m	15 m
0.3 mm	97%	100%	100%	100%
1 mm	76%	96%	100%	100%
3 mm	50%	76%	95%	99%
5 mm	40%	63%	86%	96%


Contact: Henrik Kjeldsen Senior projectleader, dr.scient hkje@teknologisk.dk +45 72 20 29 09

Traceability

Traceability in measurements

- measure

Possible traceability routes • Measuring falling drops using photographic techniques • Deducing volume of formed drops from flow and time \rightarrow selected

•
$$r = \sqrt[3]{\frac{Q}{f}} \cdot \frac{3}{4\pi}$$

- Uncertainty: Dominated by flow
- - Accuracy = 0.5 %

Status

- Device

• Metrological Traceability or Measurement Traceability is a "property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty."

• Traceability ensures that measurement is taking into account all uncertainties and is an accurate representation of an object being

• Evaporation of falling drops < 0.05 % • Flow calibration in DTI MicroFlow laboratory using gravimetric method • Pumped water is accumulated in beaker • Correction for buoyancy, displacement, evaporation, temperature variations, ...

 Drop generation 0.2 – 7 mm Test calibrations conducted • Currently upgrading setup • Increase drop velocity: High Platform or Drop Acceleration

DANISH **TECHNOLOGICAL** INSTITUTE